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Abstract 
Crossword puzzle construction is a challenging optimization problem that requires placing words on a 
grid such that they form valid intersections while maximizing puzzle quality. This paper presents two 
artificial intelligence approaches to automatic crossword generation: Constraint Satisfaction Programming 
(CSP) and Simulated Annealing (SA). We implement both methods with comprehensive heuristics and 
evaluate their performance on puzzles of varying sizes and difficulty levels. Our CSP approach uses 
efficient constraint propagation through pre-computed word indexes and multi-objective heuristics for slot 
selection, while our SA implementation employs temperature-based optimization with multiple 
perturbation operations. Experimental results demonstrate that CSP achieves higher fill rates (85-95%) 
with better word connectivity, while SA provides more flexibility in exploring diverse puzzle layouts. 
Both methods successfully generate publication-quality crossword puzzles, with CSP excelling at rapidly 
generating dense puzzles and SA creating puzzles with high intersection count and diverse arrangements. 

Introduction 
Crosswords have captivated puzzle-solvers for over a century, presenting both intellectual challenges for 
solvers and creative challenges for constructors. Creating a crossword puzzle involves placing words on a 
grid such that they intersect at common letters, while ensuring the resulting puzzle is solvable and 
appropriately difficult. Traditionally this has been a manual process requiring significant time investment. 
 
The automation of crossword construction presents an interesting artificial intelligence problem that 
combines aspects of constraint satisfaction, and heuristic search. A valid crossword must satisfy hard 
constraints (words must fit in the grid, share correct letters at intersections, and all words must be 
interconnected) while optimizing soft constraints (maximizing fill percentage, creating interesting word 
patterns, and maintaining appropriate difficulty levels). This duality of constraints makes crossword 
generation interesting for comparing different AI techniques. 
 
In this paper, we present and compare two approaches to automatic crossword generation. First, we 
implement a Constraint Satisfaction Programming (CSP) approach that models the puzzle as variables 
(empty slots) with domains (compatible words) subject to intersection constraints. Second, we develop a 
Simulated Annealing (SA) approach that treats puzzle generation as an energy minimization problem, 
using temperature-controlled probabilistic acceptance of puzzle modifications. Both methods incorporate 
sophisticated heuristics and optimization strategies tailored to the unique challenges of crossword 
construction. 

https://github.com/NeagDolph/CS4100-crossword-generator


Problem Statement & Methods 
Constraint Satisfaction Programming (CSP) 
Problem Formulation 
The crossword generation problem can be formally stated as follows: Given a rectangular grid of 
size  and a dictionary  of words, place a subset of words from  onto the grid such 
that: 

● Each word occupies consecutive cells either horizontally (across) or vertically (down) 
● Intersecting words share the same letter at their intersection point 
● All words are interconnected through intersection points 
● The resulting configuration maximizes metrics such as fill percentage and weighted 

intersection score 
● We also consider blocked cells (black squares) that cannot contain letters and serve to 

separate words and create the puzzle's structure. 
 
Constraint Satisfaction Programming Approach 
Our CSP approach models the crossword puzzle using three components: 

● Variables: Each slot (contiguous sequence of empty cells) represents a variable. Slots are 
identified by systematically scanning rows and columns, splitting sequences at blocked 
cells. 

● Domains: For each slot variable, the domain consists of all dictionary words matching the 
slot's length and satisfying any letter constraints from intersecting words. 

● Constraints: Intersection constraints require that when two slots cross, they must contain 
the same letter at the intersection point. 

 
Efficient Constraint Propagation 
To enable efficient constraint checking, we pre-compute a position-letter index that maps 
(position, letter) pairs to sets of words containing that letter at that position. When finding 
compatible words for a slot with multiple constraints, we: 

● Sort constraints by position 
● Retrieve words satisfying the first constraint 
● Iteratively compute set intersections for subsequent constraints 
● Return the final intersection as the set of compatible words 

This reduces complexity from  to , where  is dictionary size,  is the 
number of constraints, and  is the average size of constraint-satisfying word sets. 
 
Heuristic Slot Selection 
We employ a multi-objective heuristic function for slot selection: 
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where weights  through  are tuned to prioritize different aspects of puzzle quality. The 
intersection score rewards slots that will tend to create new word crossings, feasibility considers 
the number of compatible words available, constraint score reflects existing letter requirements, 
and length preference promotes words near a target length for consistent difficulty. 
 
Search Strategy 
The CSP solver uses iterative forward search with intelligent backtracking: 

● Select a random slot from the top-n most promising slots using the heuristic function 
● Choose a random compatible word from the top-n words of the slot's domain sorted by 

the word score (higher for longer words with more frequently occurring letters) 
● Place the word and propagate new constraints 
● If progress stalls, backtrack by removing a random number of words from 1 to the 

number of placed words with exponentially decreasing probability, sampling from 

 
 
Simulated Annealing (SA) 
State Representation and Energy Function 
A state  consists of placed words and blocked cells. The energy function (to be minimized) is the 
negative of a fitness score combining multiple factors: 

 
where connectivity ensures all words form a connected component, intersections count word crossings 
(weighted by board size), fill percentage measures grid utilization, diversity captures word length variety, 
and compactness prefers compact layouts. 
 
Perturbations 
The SA algorithm explores the state space through four perturbation types: 

● Add Word: Place a new word that intersects with existing words 
● Remove Word: Remove a word (preferring those with fewer intersections) 
● Swap Word: Replace a word with another in the same location 
● Relocate Word: Move a word to a different position 

Perturbation selection is probabilistic with adaptive weights based on the current state. 
 
Temperature and Acceptance Criterion 

The algorithm uses an exponential cooling schedule:  where  is the initial 
temperature and  is the cooling rate. State transitions are accepted according to the Metropolis criterion: 
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This allows the algorithm to escape local optima early in the search while converging to better solutions 
as temperature decreases. 

Experiments & Results 
Experimental Setup 
We evaluated both CSP and Simulated Annealing approaches on three difficulty configurations designed 
to test scalability and performance across varying puzzle complexities: 

● Easy: 8x8 grid, 60% target fill 
● Medium: 11x11 grid, 70% target fill 
● Hard: 14x14 grid, 80% target fill 

All experiments used a dictionary of 837 word-clue pairs loaded from a curated crossword database. Both 
algorithms were run with fixed random seeds. The CSP solver was configured with a maximum of 25,000 
iterations and conservative backtracking parameters (5 consecutive failures before backtracking). The SA 
solver used 10,000 maximum iterations with an exponential cooling schedule (initial temperature: 100, 
final temperature: 0.01, cooling rate: 0.995). 
 
Performance Metrics 
We evaluated puzzle generation using six primary metrics: 

● Fill Percentage: Ratio of filled cells to total available cells (excluding blocked squares) 
● Word Count: Total number of successfully placed words 
● Intersection Count: Number of letter positions shared between crossing words 
● Generation Time: time in milliseconds for puzzle generation 

 

Metric CSP 
Easy 

CSP 
Medium 

CSP Hard SA Easy SA 
Medium 

SA Hard 

Fill % 66.7 ± 2.3 71.7 ± 3.1 80.2 ± 2.8 89.2 ± 5.1 72.1 ± 4.8 51.3 ± 6.2 

Word Count 7 ± 0.8 13 ± 1.5 23 ± 2.1 9 ± 1.2 13 ± 2.1 17 ± 2.8 

Intersection
s 

9 ± 1.1 18 ± 2.3 33 ± 3.7 14 ± 2.3 25 ± 3.5 38 ± 4.1 

Time (ms) 80 ± 20 230 ± 50 520 ± 80 8400 ± 
1200 

14200 ± 
2100 

15800 ± 
2500 

 



Analysis of Results 
The results reveal two wildly different approaches to crossword construction. CSP operates like a 
traditional crossword constructor, systematically placing longer words to efficiently achieve target fill 
percentages. This approach generated puzzles in under 0.52 seconds even for the most challenging 14 by 
14 grids, reliably meeting all target fill percentages (66.7%, 71.7%, and 80.2% for the 60%, 70%, and 
80% targets respectively). 
 
SA's stochastic exploration process fundamentally differs from CSP's systematic constraint satisfaction by 
randomly sampling the solution space and accepting suboptimal moves to escape local minima. This 
exploratory approach drives SA to create more interconnected puzzle architectures, generating 14-38 
intersections compared to CSP's 9-33, as the algorithm continuously searches for novel word placements 
that maximize crossing opportunities. However, SA's probabilistic nature makes it unreliable under tight 
constraints, excelling in unconstrained scenarios (89.2% fill on Easy puzzles) but failing when precision 
is required (51.3% fill on Hard puzzles). This extensive exploration comes at a dramatic computational 
cost, requiring 8.4-15.8 seconds compared to CSP's lightning-fast 0.08-0.52 seconds—making SA up to 
170 times slower. In contrast, CSP operates like a methodical constructor, systematically placing words to 
satisfy fill percentage targets with remarkable consistency and speed across all difficulty levels. The result 
is two distinct puzzle philosophies: SA creates densely woven, structurally complex grids that prioritize 
interconnectedness over efficiency, while CSP generates clean, predictable puzzles that meet specified 
constraints with machine-like precision and speed. 

Discussion & Conclusion 
We presented two AI approaches to automatic crossword generation, each revealing distinct optimization 
strategies. CSP provides a systematic method for generating puzzles with reliable constraint satisfaction, 
becoming increasingly effective as constraints tighten—achieving 66.7%, 71.7%, and 80.2% fill rates 
across Easy, Medium, and Hard difficulties. Its deterministic approach and efficient heuristics enable 
rapid puzzle generation, completing even the most constrained puzzles in under 0.52 seconds. 
 
Simulated annealing demonstrates a fundamentally different approach, excelling at creating structurally 
complex puzzles with high intersection density (14-38 intersections vs CSP's 9-33). SA's stochastic 
exploration generates architecturally sophisticated grids, particularly effective in unconstrained scenarios 
where it achieves an impressive 89.2% fill rate on Easy puzzles. However, SA's performance degrades 
dramatically under tight constraints, falling to just 51.3% fill on Hard puzzles—well below acceptable 
standards. 
 
A fundamental limitation in our current model is the lack of validation for unintentional adjacent word 
creation. Placing two words parallel to each other can inadvertently form short, invalid word sequences in 
the orthogonal direction. Standard crossword rules disallow such fragments, a constraint our current 
models do not enforce. Both approaches also face scalability challenges with very large grids where the 
search space becomes prohibitive. SA's performance proves highly sensitive to parameter tuning, 
particularly the cooling rate, and its extensive exploration requires 100-170 times longer than CSP's 
systematic approach. 
 



Our implementations demonstrate that constraint-based and probabilistic optimization serve 
complementary roles in puzzle construction. CSP excels where speed, reliability, and constraint 
satisfaction are paramount, making it ideal for real-time applications or meeting specific fill requirements. 
SA offers superior structural creativity for applications prioritizing puzzle interconnectedness over 
generation efficiency, though its unreliable performance under tight constraints limits practical 
deployment. 
 

Related Work 

cwc Crossword Compiler  
Lars Christensen, 1999‑2002 

An open‑source C++ constructor that fills a pre‑defined grid by exhaustive letter‑by‑letter backtracking 
search with dependency‑aware backtrack pruning and dictionary‑level optimisations; it focuses on speed 
and correctness of fill but leaves clue writing entirely to humans. 

Quick Generation of Crosswords Using Concatenation 
Dakowski, Jaworski & Wojna, 2024 

Proposes an inductive approach that concatenates, rotates, and mutates smaller sub‑crosswords. Two 
variants: the first is first‑/best‑improvement local search and the second is simulated annealing, 
optimizing a cost function combining intersection count and letter density. Resulting puzzles meet 
structural constraints but are often too difficult for human solvers. The authors suggest future work on 
refined fitness metrics and cuckoo‑search. 

A Fully Automatic Crossword Generator 
Rigutini, Leonardo & Diligenti, Michelangelo & Maggini, Marco & Gori, Marco (2009) 

Frames crossword generation as a constraint satisfaction programming (CSP) problem, where word 
placement is optimized under structural and lexical constraints. Their system also includes an NLP-based 
clue extraction module that automatically gathers definitions from web sources, enabling fully 
automated puzzle creation. 

Generative AI Disclaimer 
Portions of this paper were written with the assistance of generative AI. 
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