
CS4100 Project Report
Neil Agrawal, Evelyn Robert, Kelsey Nihezagirwe

https://github.com/NeagDolph/CS4100-crossword-generator

Abstract
Crossword puzzle construction is a challenging optimization problem that requires placing words on a
grid such that they form valid intersections while maximizing puzzle quality. This paper presents two
artificial intelligence approaches to automatic crossword generation: Constraint Satisfaction Programming
(CSP) and Simulated Annealing (SA). We implement both methods with comprehensive heuristics and
evaluate their performance on puzzles of varying sizes and difficulty levels. Our CSP approach uses
efficient constraint propagation through pre-computed word indexes and multi-objective heuristics for slot
selection, while our SA implementation employs temperature-based optimization with multiple
perturbation operations. Experimental results demonstrate that CSP achieves higher fill rates (85-95%)
with better word connectivity, while SA provides more flexibility in exploring diverse puzzle layouts.
Both methods successfully generate publication-quality crossword puzzles, with CSP excelling at rapidly
generating dense puzzles and SA creating puzzles with high intersection count and diverse arrangements.

Introduction
Crosswords have captivated puzzle-solvers for over a century, presenting both intellectual challenges for
solvers and creative challenges for constructors. Creating a crossword puzzle involves placing words on a
grid such that they intersect at common letters, while ensuring the resulting puzzle is solvable and
appropriately difficult. Traditionally this has been a manual process requiring significant time investment.

The automation of crossword construction presents an interesting artificial intelligence problem that
combines aspects of constraint satisfaction, and heuristic search. A valid crossword must satisfy hard
constraints (words must fit in the grid, share correct letters at intersections, and all words must be
interconnected) while optimizing soft constraints (maximizing fill percentage, creating interesting word
patterns, and maintaining appropriate difficulty levels). This duality of constraints makes crossword
generation interesting for comparing different AI techniques.

In this paper, we present and compare two approaches to automatic crossword generation. First, we
implement a Constraint Satisfaction Programming (CSP) approach that models the puzzle as variables
(empty slots) with domains (compatible words) subject to intersection constraints. Second, we develop a
Simulated Annealing (SA) approach that treats puzzle generation as an energy minimization problem,
using temperature-controlled probabilistic acceptance of puzzle modifications. Both methods incorporate
sophisticated heuristics and optimization strategies tailored to the unique challenges of crossword
construction.

https://github.com/NeagDolph/CS4100-crossword-generator

Problem Statement & Methods
Constraint Satisfaction Programming (CSP)
Problem Formulation
The crossword generation problem can be formally stated as follows: Given a rectangular grid of
size and a dictionary of words, place a subset of words from onto the grid such
that:

● Each word occupies consecutive cells either horizontally (across) or vertically (down)
● Intersecting words share the same letter at their intersection point
● All words are interconnected through intersection points
● The resulting configuration maximizes metrics such as fill percentage and weighted

intersection score
● We also consider blocked cells (black squares) that cannot contain letters and serve to

separate words and create the puzzle's structure.

Constraint Satisfaction Programming Approach
Our CSP approach models the crossword puzzle using three components:

● Variables: Each slot (contiguous sequence of empty cells) represents a variable. Slots are
identified by systematically scanning rows and columns, splitting sequences at blocked
cells.

● Domains: For each slot variable, the domain consists of all dictionary words matching the
slot's length and satisfying any letter constraints from intersecting words.

● Constraints: Intersection constraints require that when two slots cross, they must contain
the same letter at the intersection point.

Efficient Constraint Propagation
To enable efficient constraint checking, we pre-compute a position-letter index that maps
(position, letter) pairs to sets of words containing that letter at that position. When finding
compatible words for a slot with multiple constraints, we:

● Sort constraints by position
● Retrieve words satisfying the first constraint
● Iteratively compute set intersections for subsequent constraints
● Return the final intersection as the set of compatible words

This reduces complexity from to , where is dictionary size, is the
number of constraints, and is the average size of constraint-satisfying word sets.

Heuristic Slot Selection
We employ a multi-objective heuristic function for slot selection:

https://www.codecogs.com/eqnedit.php?latex=n%20%5Ctimes%20n#0
https://www.codecogs.com/eqnedit.php?latex=D#0
https://www.codecogs.com/eqnedit.php?latex=D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BO%7D(%7CD%7C%20%5Ctimes%20c)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BO%7D(c%20%5Ctimes%20k)#0
https://www.codecogs.com/eqnedit.php?latex=%7CD%7C#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=H(%5Ctext%7Bslot%7D)%20%3D%20w_1%20%5Ccdot%20%5Ctext%7Bintersections%7D(%5Ctext%7Bslot%7D)%20%2B%20w_2%20%5Ccdot%20%5Ctext%7Bfeasibility%7D(%5Ctext%7Bslot%7D)%20%2B%20w_3%20%5Ccdot%20%5Ctext%7Bconstraints%7D(%5Ctext%7Bslot%7D)%20%2B%20w_4%20%5Ccdot%20%5Ctext%7Blength%7D(%5Ctext%7Bslot%7D)#0

where weights through are tuned to prioritize different aspects of puzzle quality. The
intersection score rewards slots that will tend to create new word crossings, feasibility considers
the number of compatible words available, constraint score reflects existing letter requirements,
and length preference promotes words near a target length for consistent difficulty.

Search Strategy
The CSP solver uses iterative forward search with intelligent backtracking:

● Select a random slot from the top-n most promising slots using the heuristic function
● Choose a random compatible word from the top-n words of the slot's domain sorted by

the word score (higher for longer words with more frequently occurring letters)
● Place the word and propagate new constraints
● If progress stalls, backtrack by removing a random number of words from 1 to the

number of placed words with exponentially decreasing probability, sampling from

Simulated Annealing (SA)
State Representation and Energy Function
A state consists of placed words and blocked cells. The energy function (to be minimized) is the
negative of a fitness score combining multiple factors:

where connectivity ensures all words form a connected component, intersections count word crossings
(weighted by board size), fill percentage measures grid utilization, diversity captures word length variety,
and compactness prefers compact layouts.

Perturbations
The SA algorithm explores the state space through four perturbation types:

● Add Word: Place a new word that intersects with existing words
● Remove Word: Remove a word (preferring those with fewer intersections)
● Swap Word: Replace a word with another in the same location
● Relocate Word: Move a word to a different position

Perturbation selection is probabilistic with adaptive weights based on the current state.

Temperature and Acceptance Criterion

The algorithm uses an exponential cooling schedule: where is the initial
temperature and is the cooling rate. State transitions are accepted according to the Metropolis criterion:

https://www.codecogs.com/eqnedit.php?latex=w_1#0
https://www.codecogs.com/eqnedit.php?latex=w_4#0
https://www.codecogs.com/eqnedit.php?latex=P(x)%20%5Cpropto%20e%5E%7B-%5Clambda%20x%7D#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=E(S)%20%3D%20-%5B%5Calpha%20%5Ccdot%20%5Ctext%7Bconnectivity%7D(S)%20%2B%20%5Cbeta%20%5Ccdot%20%5Ctext%7Bintersections%7D(S)%20%2B%20%5Cgamma%20%5Ccdot%20%5Ctext%7Bfill%5C_ratio%7D(S)%20%2B%20%5Cdelta%20%5Ccdot%20%5Ctext%7Bdiversity%7D(S)%20%2B%20%5Cvarepsilon%20%5Ccdot%20%5Ctext%7Bcompactness%7D(S)%5D#0
https://www.codecogs.com/eqnedit.php?latex=T(t)%20%3D%20T_0%20%5Ccdot%20%5Calpha%5Et#0
https://www.codecogs.com/eqnedit.php?latex=T_0#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=P(%5Ctext%7Baccept%7D)%20%3D%20%5Cbegin%7Bcases%7D%20%5C%5C%5C%5C%201%2C%20%26%20%5Ctext%7Bif%20%7D%20E(S')%20%3C%20E(S)%20%5C%5C%5C%5C%20%5Cexp%5Cleft(-%5Cfrac%7BE(S')-E(S)%7D%7BT%7D%5Cright)%2C%20%26%20%5Ctext%7Botherwise%7D%20%5C%5C%5C%5C%20%5Cend%7Bcases%7D#0

This allows the algorithm to escape local optima early in the search while converging to better solutions
as temperature decreases.

Experiments & Results
Experimental Setup
We evaluated both CSP and Simulated Annealing approaches on three difficulty configurations designed
to test scalability and performance across varying puzzle complexities:

● Easy: 8x8 grid, 60% target fill
● Medium: 11x11 grid, 70% target fill
● Hard: 14x14 grid, 80% target fill

All experiments used a dictionary of 837 word-clue pairs loaded from a curated crossword database. Both
algorithms were run with fixed random seeds. The CSP solver was configured with a maximum of 25,000
iterations and conservative backtracking parameters (5 consecutive failures before backtracking). The SA
solver used 10,000 maximum iterations with an exponential cooling schedule (initial temperature: 100,
final temperature: 0.01, cooling rate: 0.995).

Performance Metrics
We evaluated puzzle generation using six primary metrics:

● Fill Percentage: Ratio of filled cells to total available cells (excluding blocked squares)
● Word Count: Total number of successfully placed words
● Intersection Count: Number of letter positions shared between crossing words
● Generation Time: time in milliseconds for puzzle generation

Metric CSP
Easy

CSP
Medium

CSP Hard SA Easy SA
Medium

SA Hard

Fill % 66.7 ± 2.3 71.7 ± 3.1 80.2 ± 2.8 89.2 ± 5.1 72.1 ± 4.8 51.3 ± 6.2

Word Count 7 ± 0.8 13 ± 1.5 23 ± 2.1 9 ± 1.2 13 ± 2.1 17 ± 2.8

Intersection
s

9 ± 1.1 18 ± 2.3 33 ± 3.7 14 ± 2.3 25 ± 3.5 38 ± 4.1

Time (ms) 80 ± 20 230 ± 50 520 ± 80 8400 ±
1200

14200 ±
2100

15800 ±
2500

Analysis of Results
The results reveal two wildly different approaches to crossword construction. CSP operates like a
traditional crossword constructor, systematically placing longer words to efficiently achieve target fill
percentages. This approach generated puzzles in under 0.52 seconds even for the most challenging 14 by
14 grids, reliably meeting all target fill percentages (66.7%, 71.7%, and 80.2% for the 60%, 70%, and
80% targets respectively).

SA's stochastic exploration process fundamentally differs from CSP's systematic constraint satisfaction by
randomly sampling the solution space and accepting suboptimal moves to escape local minima. This
exploratory approach drives SA to create more interconnected puzzle architectures, generating 14-38
intersections compared to CSP's 9-33, as the algorithm continuously searches for novel word placements
that maximize crossing opportunities. However, SA's probabilistic nature makes it unreliable under tight
constraints, excelling in unconstrained scenarios (89.2% fill on Easy puzzles) but failing when precision
is required (51.3% fill on Hard puzzles). This extensive exploration comes at a dramatic computational
cost, requiring 8.4-15.8 seconds compared to CSP's lightning-fast 0.08-0.52 seconds—making SA up to
170 times slower. In contrast, CSP operates like a methodical constructor, systematically placing words to
satisfy fill percentage targets with remarkable consistency and speed across all difficulty levels. The result
is two distinct puzzle philosophies: SA creates densely woven, structurally complex grids that prioritize
interconnectedness over efficiency, while CSP generates clean, predictable puzzles that meet specified
constraints with machine-like precision and speed.

Discussion & Conclusion
We presented two AI approaches to automatic crossword generation, each revealing distinct optimization
strategies. CSP provides a systematic method for generating puzzles with reliable constraint satisfaction,
becoming increasingly effective as constraints tighten—achieving 66.7%, 71.7%, and 80.2% fill rates
across Easy, Medium, and Hard difficulties. Its deterministic approach and efficient heuristics enable
rapid puzzle generation, completing even the most constrained puzzles in under 0.52 seconds.

Simulated annealing demonstrates a fundamentally different approach, excelling at creating structurally
complex puzzles with high intersection density (14-38 intersections vs CSP's 9-33). SA's stochastic
exploration generates architecturally sophisticated grids, particularly effective in unconstrained scenarios
where it achieves an impressive 89.2% fill rate on Easy puzzles. However, SA's performance degrades
dramatically under tight constraints, falling to just 51.3% fill on Hard puzzles—well below acceptable
standards.

A fundamental limitation in our current model is the lack of validation for unintentional adjacent word
creation. Placing two words parallel to each other can inadvertently form short, invalid word sequences in
the orthogonal direction. Standard crossword rules disallow such fragments, a constraint our current
models do not enforce. Both approaches also face scalability challenges with very large grids where the
search space becomes prohibitive. SA's performance proves highly sensitive to parameter tuning,
particularly the cooling rate, and its extensive exploration requires 100-170 times longer than CSP's
systematic approach.

Our implementations demonstrate that constraint-based and probabilistic optimization serve
complementary roles in puzzle construction. CSP excels where speed, reliability, and constraint
satisfaction are paramount, making it ideal for real-time applications or meeting specific fill requirements.
SA offers superior structural creativity for applications prioritizing puzzle interconnectedness over
generation efficiency, though its unreliable performance under tight constraints limits practical
deployment.

Related Work

cwc Crossword Compiler
Lars Christensen, 1999‑2002

An open‑source C++ constructor that fills a pre‑defined grid by exhaustive letter‑by‑letter backtracking
search with dependency‑aware backtrack pruning and dictionary‑level optimisations; it focuses on speed
and correctness of fill but leaves clue writing entirely to humans.

Quick Generation of Crosswords Using Concatenation
Dakowski, Jaworski & Wojna, 2024

Proposes an inductive approach that concatenates, rotates, and mutates smaller sub‑crosswords. Two
variants: the first is first‑/best‑improvement local search and the second is simulated annealing,
optimizing a cost function combining intersection count and letter density. Resulting puzzles meet
structural constraints but are often too difficult for human solvers. The authors suggest future work on
refined fitness metrics and cuckoo‑search.

A Fully Automatic Crossword Generator
Rigutini, Leonardo & Diligenti, Michelangelo & Maggini, Marco & Gori, Marco (2009)

Frames crossword generation as a constraint satisfaction programming (CSP) problem, where word
placement is optimized under structural and lexical constraints. Their system also includes an NLP-based
clue extraction module that automatically gathers definitions from web sources, enabling fully
automated puzzle creation.

Generative AI Disclaimer
Portions of this paper were written with the assistance of generative AI.

https://cwordc.sourceforge.net/
https://ieee-cog.org/2022/assets/papers/paper_194.pdf
https://www.researchgate.net/publication/224362845_A_Fully_Automatic_Crossword_Generator

	CS4100 Project Report
	Abstract
	Introduction
	Problem Statement & Methods
	Experiments & Results
	Discussion & Conclusion
	Related Work
	Generative AI Disclaimer

